El flujo de la información genética alumno/A: curso 2015



Descargar 113.48 Kb.
Fecha de conversión24.06.2018
Tamaño113.48 Kb.

5I EPET 3

CICLO BÁSICO DE LA EDUCACIÓN SECUNDARIA- BIOLOGIA

Profesora: Gabriela Espelosin

El flujo de la información genética

ALUMNO/A: ________________ ___________________ CURSO_______ 2015

LA REPRODUCCIÓN

La reproducción es una función encaminada a auto perpetuar la especie, a evitar que la especie se extinga y desaparezca; es una función que, a nivel celular, implica la desaparición de la célula que se reproduce en beneficio de su especie; incluso en algunos seres pluricelulares más complejos también puede implicar la muerte de los individuos reproductores (plantas que se reproducen y mueren, hembras que devoran a los machos, crías que devoran a la madre, etc.).

Existen dos tipos de reproducción, tanto en seres unicelulares, como en seres pluricelulares, aunque en éstos los procesos se complican algo más, pero los mecanismos básicos son los mismos:

a) Reproducción asexual

b) Reproducción sexual


a.- Reproducción asexual: Es el tipo más primitivo y más sencillo, ya que no requiere ni estructuras ni células especializadas; en el caso más sencillo, el de los seres unicelulares, consiste en que a partir de una célula, llamada CÉLULA MADRE, se forman dos o más células, llamadas CÉLULAS HIJAS, que son idénticas a la célula madre, sin cambios.



Este tipo de reproducción posee como principal ventaja el ser muy rápida, lo que permite colonizar amplios espacios en muy poco tiempo, sin embargo tiene el gran inconveniente de que no permite cambios y por tanto no permite evolucionar.




b.- Reproducción sexual: Es más evolucionada que la asexual y más compleja, ya que se requieren células y órganos especializados y, generalmente, dos individuos distintos para llevarla a cabo. Las células especializadas se denominan GAMETOS y se forman en las GÓNADAS, que son los órganos especializados. Lo más importante es que la reproducción sexual implica cambios genéticos, por lo que las generaciones descendientes son distintas que las generaciones parentales, pueden mejorar y obtenerse combinaciones genéticas más favorables.




En la reproducción sexual se llevan a cabo tres procesos diferentes:
1.- GAMETOGÉNESIS: Proceso de formación de gametos; a partir de

http://recursostic.educacion.es/ciencias/biosfera/web/alumno/4eso/genetica1/imagenes/repsexual.gif

una célula madre se forman 4 gametos.


2.- FECUNDACIÓN: Dos gametos de distintos individuos se fusionan (se unen sus citoplasmas y sus núcleos) originando una nueva célula denominada ZIGOTO.
3.- DESARROLLO EMBRIONARIO: Procesos por los cuales un zigoto se transforma para dar un adulto.

Cada ser vivo tiene unos rasgos, unas características que comparte con los de su especie, como son la forma y el aspecto externo, el modo de vida, el comportamiento, el tipo de alimentación, etc; cada ser vivo se parece a sus progenitores, pero siempre es diferente, hecho que ya observó el propio Darwin, pero, ¿qué es en realidad lo que nos dan nuestros padres para parecernos a ellos?; ¿por qué desarrollamos dos piernas, o seis patas, o cuatro alas?, ¿por qué huimos de un predador, o cazamos a una presa, o bailamos delante de una hembra?, ¿dónde reside la información que necesitamos para ser como somos?, ¿cómo le pasamos esa información a nuestros descendientes?.http://recursostic.educacion.es/ciencias/biosfera/web/alumno/4eso/genetica1/imagenes/jirafa1.jpg

Estas cuestiones son las que intentan ser respondidas por la Genética, aquella parte de la Biología que estudia los caracteres de los seres vivos y su herencia, que estudia, en definitiva, cómo a partir de una molécula, el ADN, se desarrollan los caracteres, y cómo, a través de la reproducción, esa molécula pasa de padres a hijos, y por tanto los hijos pueden desarrollar los mismos caracteres que los padres.

Del ADN a la biotecnología moderna

El conocimiento del ADN (ácido desoxirribonucleico), su estructura y función, fue determinante para el desarrollo de la biotecnología moderna ( tema que veremos más adelante)

La estructura de doble hélice del ADN, que los investigadores James Watson y Francis Crick propusieran en 1953 proporcionó respuestas a muchas preguntas que se tenían sobre la herencia. Predijo la autorreplicación del material genético y la idea de que la información genética estaba contenida en la secuencia de las bases que conforman el ADN. Más aún, con el correr de los años y de las investigaciones, se pudo determinar que todos los seres vivos contienen un ADN similar, formado a partir de las mismas unidades: los nucleótidos. Este código genético mediante el cual se “escriben” las instrucciones celulares es común a todos los organismos. Es decir que el ADN de un ser humano puede ser “leído” dentro de una bacteria, y una planta puede interpretar la información genética de otra planta diferente. A esta propiedad de la información genética se la conoce como “universalidad del código genético”.

El código genético universal es uno de los conceptos básicos para comprender los procesos de la biotecnología moderna. Por ejemplo, la posibilidad de generar organismos transgénicos, y que las instrucciones del ADN de un organismo puedan determinar nuevas características en organismos totalmente diferentes

La función del ADN

El ADN tiene la función de “guardar información”. Es decir, contiene las instrucciones que determinan la forma y características de un organismo y sus funciones. Además, a través del ADN se transmiten esas características a los descendientes durante la reproducción, tanto sexual como asexual. Todas las células, procariotas y eucariotas, contienen ADN en sus células. En las células eucariotas el ADN está contenido dentro del núcleo celular, mientras que en las células procariotas, que no tienen un núcleo definido, el material genético está disperso en el citoplasma celular.
La estructura del ADN

El ADN está organizado en cromosomas. En las células eucariotas los cromosomas son lineales, mientras que los organismos procariotas, como las bacterias, presentan cromosomas circulares. Para cada especie, el número de cromosomas es fijo. Por ejemplo, los seres humanos tienen 46 cromosomas en cada célula somática (no sexual), agrupados en 23 pares, de los cuales 22 son autosomas y un par es sexual. Una mujer tendrá un par de cromosomas sexuales XX y un varón tendrá un par XY.

Cada cromosoma tiene dos brazos, ubicados por arriba y por debajo del centrómero. Cuando los cromosomas se duplican, previo a la división celular, cada cromosoma está formado por dos moléculas de ADN unidas por el centrómero, conocidas como cromátidas hermanas.



Esquema de un cromosoma duplicado
El ADN se compone de dos cadenas, cada una formada por nucleótidos. Cada nucleótido, a su vez, está compuesto por un azúcar (desoxirribosa), un grupo fosfato y una base nitrogenada. Las bases nitrogenadas son cuatro: adenina (A), timina (T), citosina (C), y guanina (G), y siempre una A se enfrenta a una T y una C se enfrenta a una G en la doble cadena. Las bases enfrentadas se dice que son complementarias. El ADN adopta una forma de doble hélice, como una escalera caracol donde los lados son cadenas de azúcares y fosfatos conectadas por “escalones”, que son las bases nitrogenadas. La molécula de ADN se asocia a proteínas, llamadas histonas, y se encuentra muy enrollada y compactada para formar el cromosoma. Esta asociación de ADN y proteínas se conoce como cromatina. La cromatina puede estar enrollada en mayor o menor grado, dependiendo de la etapa en que se encuentra la célula; por ejemplo, cuando el ADN se ha duplicado antes de que la célula se divida, la cromatina se compacta en su mayor grado, y como resultado se pueden visualizar los cromosomas duplicados al microscopio como corpúsculos con forma de X.http://www.genomasur.com/bch/bch_libro/imagenescap_3/adn-def.jpg

La doble hélice de ADN con las bases nitrogenadas complementarias que se ubican hacia dentro y establecen uniones no covalentes (o fuerzas de atracción) entre sí que mantienen la estructura de la molécula. Las desoxirribosas (azúcares) y los grupos fosfato constituyen las columnas de la molécula.



¿Cómo se interpretan las instrucciones escritas en el ADN?

La información está guardada en el ADN en el código de secuencia de bases A, T, C y G que se combinan para originar “palabras” denominadas genes. Los genes son fragmentos de ADN cuya secuencia nucleotídica codifica para una proteína. Es decir que a partir de la información “escrita” en ese fragmento de ADN se fabrica (sintetiza) un tipo particular de proteína. Aunque, en realidad, los genes también llevan la información necesaria para fabricar moléculas de ARN (ribosomal y de transferencia) que intervienen en el proceso de síntesis de proteínas. El ARN (ácido ribonucleico) es una molécula con una estructura similar al ADN.

Un gen no es una estructura que se vea sino que se define a nivel funcional. Es una secuencia que va a empezar en algún lugar del ADN y va a terminar en otro. Para conocer un gen se secuencia, se determina la cantidad de los nucleótidos que lo forman y el orden en que se ubican.

Todas las células de un organismo tienen el mismo genoma, o conjunto de genes. Pero, en cada célula se expresan los genes que se usan. Por ejemplo, aunque una célula de la piel tiene toda la información genética al igual que la célula del hígado, en la piel solo se expresarán aquellos genes que den características de piel, mientras que los genes que dan características de hígado, estarán allí “apagados”. Por el contrario, los genes que dan rasgos de “hígado” estarán activos en el hígado e inactivos en la piel. Lo que no se usa se encuentra mayormente compactado. http://upload.wikimedia.org/wikipedia/commons/thumb/b/b3/chromosome-es.svg/350px-chromosome-es.svg.png



TIPOS DE ARN

ARN mensajero (ARNm)http://www.inmegen.gob.mx/tema/cms_page_media/214/transcripcion.gif

ARN lineal, que contiene la información, copiada del ADN, para sintetizar una proteína. Se forma en el núcleo celular, a partir de una secuencia de ADN. Sale del núcleo y se asocia a ribosomas, donde se construye la proteína. A cada tres nucleótidos (codon) corresponde un aminoácido distinto. Así, la secuencia de aminoácidos de la proteína está configurada a partir de la secuencia de los nucleótidos del ARNm.



ARN ribosómico (ARNr)

El ARN ribosómico, o ribosomal, unido a proteínas de carácter básico, forma los ribosomas. Los ribosomas son las estructuras celulares donde se ensamblan aminoácidos para formar proteínas, a partir de la información que transmite el ARN mensajero. Hay dos tipos de ribosomas, el que se encuentra en células procariotas y en el interior de mitocondrias y cloroplastos, y el que se encuentra en el hialoplasma o en el retículo endoplásmico de células eucariotas.http://www.angelfire.com/magic2/bioquimica/14-31c.jpg



 







ARN transferente (ARNt)

El ARN transferente o soluble es un ARN no lineal.

En el ARNt se distinguen tres tramos (brazos). En uno de ellos , aparece una secuencia de tres nucleótidos, denominada anticodon. Esta secuencia es complementaria con una secuencia del ARNm, el codon. En el brazo opuesto , en el extremo 3' de la cadena, se une un aminoácido específico predeterminado por la secuencia de anticodon.

La función del ARNt consiste en llevar un aminoácido específico al ribosoma. En él se une a la secuencia complementaria del ARNm, mediante el anticodon. A la vez, transfiere el aminoácido correspondiente a la secuencia de aminoácidos que está formándose en el ribosoma.http://www.abc.com.py/imagenes/2013/12/20/_250_284_788880.jpg



.

La síntesis de proteínas

Las proteínas son macromoléculas que cumplen funciones variadas. Hay proteínas estructurales, otras son enzimas, otras transportan oxígeno como la hemoglobina, hay proteínas involucradas en la defensa inmunitaria, como los anticuerpos, otras cumplen funciones de hormonas como la insulina, etc.

Así como el ADN está compuesto a partir de nucleótidos, las proteínas están compuestas a partir de aminoácidos. Hay 20 aminoácidos diferentes, y cada proteína tiene una secuencia de aminoácidos particular.

El proceso de síntesis de proteínas consta básicamente de dos etapas: la transcripción y la traducción. En la primera etapa, las “palabras” (genes) escritas en el ADN en el lenguaje de los nucleótidos se copian o transcriben a otra molécula, el ARN mensajero (ARNm). Luego, en la etapa siguiente, el ARNm se traduce al idioma de las proteínas, el de los aminoácidos. Este flujo de información se conoce como el “dogma central de la biología”.

Proceso de síntesis de proteínas en una célula eucariota. La transcripción ocurre dentro del núcleo y la traducción en los ribosomas en el citoplasma.


La transcripción

Durante la transcripción la enzima ARN polimerasa, copia la secuencia de una hebra del ADN y fabrica una molécula de ARN complementaria al fragmento de ADN transcripto. El proceso es similar a la replicación del ADN, pero la molécula nueva que se forma es de cadena simple y se denomina ARN. Se denomina ARN mensajero porque va a llevar la información del ADN hacia los ribosomas, las organelas encargadas de fabricar las proteínas. El ARN, o ácido ribonucleico, es similar al ADN aunque no igual.

Como muestra la imagen, el ARN se diferencia del ADN en que es de cadena simple, en lugar del azúcar desoxirribosa tiene ribosa, y en lugar de la base nitrogenada timina, (T), tiene uracilo (U).

http://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/difference_dna_rna-es.svg/450px-difference_dna_rna-es.svg.png

La traducción y el código genético

La molécula del ARN mensajero se traslada a los ribosomas donde ocurre la etapa de traducción. Durante esta etapa el ribosoma lee la secuencia de nucleótidos del ARN mensajero por tripletes o tríos de nucleótidos, denominados codones. A medida que el ribosoma lee la secuencia de codones va formando una proteína, a partir de la unión de aminoácidos. Según cuál es el codón que el ribosoma “lee” va colocando el aminoácido que corresponde. Si se considera la combinación de cuatro bases tomadas de a tres, existe un total de 64 codones posibles. Cada codón determina qué aminoácido se colocará en la proteína que se está fabricando. De los 64 codones, 61 corresponden a aminoácidos y 3 son codones de terminación (stop), responsables de la finalización de la síntesis proteicahttp://html.rincondelvago.com/000583865.pnghttp://html.rincondelvago.com/000583863.png

http://html.rincondelvago.com/000583868.pnghttp://html.rincondelvago.com/000583866.png

La siguiente tabla es el código genético o “diccionario” que permite traducir la información escrita en el lenguaje de los ácidos nucleicos (nucleótidos) al lenguaje de las proteínas (aminoácidos), y es universal, o sea, es válido para todos los seres vivos.


el cuaderno 3 - tabla codigo genetico

http://images.clinicaltools.com/images/gene/codontable.jpg

La tabla del código genético es universal y permite conocer a partir de la secuencia del ARN mensajero cómo será la secuencia de la proteína para la cual el gen correspondiente codifica.


Así, la secuencia ATG (AUG en el ARNm) codifica para el aminoácido metionina, y el codón TTT (UUU en el ARNm) codifica para el aminoácido fenilalanina en todos los organismos vivos. Como sólo existen 20 aminoácidos en la naturaleza, varios codones pueden codificar para el mismo aminoácido (por ejemplo, al aminoácido glicina le corresponden los codones GGU, GGC, GGA y GGG).

Cada codón del ARNm es leído por otro ARN, llamado ARN de transferencia (ARNt), que actúa como un “adaptador” entre la información que lleva el ARNm y los aminoácidos que deben ir colocándose para formar la proteína correspondiente. El ARNt es muy pequeño comparado con los ARNm y tiene una secuencia, denominada anticodón que aparea (es decir, es complementaria) con el codón. Cada ARN de transferencia tiene un anticodón y “carga” un aminoácido en particular. Por ejemplo, el ARNt que tiene el anticodón UCA, se aparea al codón AGU, y carga el aminoácido serina (Ser). De la misma manera, el ARNt que carga tirosina (Tyr) se aparea, a través de su anticodón, con el codón UAC. Así se va formando una cadena polipeptídica (proteína) a medida que los anticodones de los ARNt reconocen sus respectivos codones en el ARNm. Este proceso de síntesis proteica ocurre en los ribosomas.



LAS PROTEINAS

Las proteínas son los materiales que desempeñan un mayor número de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.  



Son macromoléculas orgánicas, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (I), etc...

Estos elementos químicos se agrupan para formar unidades estructurales  llamados AMINOÁCIDOS, a los cuales podríamos considerar como los "ladrillos de los edificios moleculares proteicos".



Función estructural: forman estructuras capaces de soportar gran tensión continuada, como un tendón o el armazón proteico de un hueso o un cartílago. También pueden soportar tensión de forma intermitente, como la elastina de la piel o de un pulmón. Además, forman estructuras celulares, como la membrana plasmática o los ribosomas. Las células poseen un citoesqueleto de naturaleza proteica que constituye un armazón alrededor del cual se organizan todos sus componentes, y que dirige fenómenos tan importantes como el transporte intracelular o la división celular. En los tejidos de sostén (conjuntivo, óseo, cartilaginoso) de los vertebrados, las fibras de colágeno forman parte importante de la matriz extracelular y son las encargadas de conferir resistencia mecánica tanto a la tracción como a la compresión. La queratina compone el pelo, las uñas, la piel, las plumas y las escamas. Todas ellas son proteínas estructurales. La fibroina de la seda y de las telarañas es otro ejemplo de proteína estructural.

Movimiento y contracción: la actina y la miosina forman estructuras que producen movimiento. Mueven los músculos estriados y lisos. La actina genera movimiento de contracción en muchos tipos de células animales.

Transporte: algunas proteínas tienen la capacidad de transportar sustancias, como oxígeno-hemoglobina- o lípidos, o electrones.http://icygga10.wikispaces.com/file/view/contracci%c3%b3n_m%c3%basculo.png/196446466/443x375/contracci%c3%b3n_m%c3%basculo.png

la hemoglobina de los glóbulos rojos transporta oxígeno.

Reserva energética:la ovoalbúmina de la clara de huevo, la lactoalbúmina de la leche, la gliadina del grano de trigo y la hordeína de la cebada, constituyen una reserva de aminoácidos para el futuro desarrollo del embrión proteínas grandes, generalmente con grupos fosfato, sirven para acumular y producir energía, si se necesita.http://alimentosproteinas.com/img-alimentosproteinas.com/huevo-clara-proteinas.jpg

Funciones de las proteínas


Función homeostática: consiste en regular las constantes del medio interno, tales como pH o cantidad de agua.



Función defensiva: las inmunoglobulinas son proteínas producidas por linfocitos B, e implicadas en la defensa del organismo.

Función hormonal: algunas proteínas funcionan como mensajeros de señales hormonales, generando una respuesta en los órganos blanco.

Función enzimática: las enzimas funcionan como biocatalizadores, ya que controlan las reacciones metabólicas, disminuyendo la energía de activación de estas reacciones.

División o reproducción celular


Las células se reproducen duplicando tanto su contenido nuclear como el citoplasmático y luego dividiéndose en dos. La etapa o fase de división posterior es el medio fundamental a través del cual todos los seres vivos se propagan.

celulaimagen030

En especies unicelulares como las bacterias y las levaduras, cada división de la célula única produce un nuevo organismo.

Es especies pluricelulares se requieren muchas secuencias de divisiones celulares para crear un nuevo individuo; la división celular también es necesaria en el cuerpo adulto para reemplazar las células perdidas por desgaste, deterioro o por muerte celular programada.

Así, un humano adulto debe producir muchos millones de nuevas células cada segundo simplemente para mantener el estado de equilibrio y si la división celular se detiene el individuo moriría en pocos días.

El ciclo celular comprende el conjunto de procesos que una célula debe realizar para cumplir la replicación exacta del ADN y la segregación (separación o división) de los cromosomas replicados en dos células distintas.

La gran mayoría de las células también doblan su masa y duplican todos sus orgánulos citoplasmáticos en cada ciclo celular: De este modo, durante el ciclo celular un conjunto complejo de procesos citoplasmáticos y nucleares tienen que coordinarse unos con otros.

Las plantas y los animales están formados por miles de millones de células individuales organizadas en tejidos y órganos que cumplen funciones específicas. Todas las células de cualquier planta o animal han surgido a partir de una única célula inicial —el óvulo fecundado— por un proceso de división.

En lo que respecta a la división o reproducción del núcleo celular (segunda etapa del ciclo celular), existen dos variantes, dependiendo del tipo de célula que deba dividirse o reproducirse: la mitosis y la meiosis.


celulaimagen001



Mitosis

La mitosis es la división nuclear asociada a la división de las células somáticas.

Las células somáticas de un organismo eucariótico son todas aquellas que no van a convertirse en células sexuales.

La mitosis, entonces, es el proceso de división o reproducción nuclear (del núcleo) de cualquier célula que no sea germinal (sexual). En ella, una de las estructuras más importantes son los cromosomas, formados por el ADN y las proteínas presentes en el núcleo.

Una manera de describir un cromosoma en forma sencilla sería: corresponde a dos brazos, los cuales están unidos por el centrómero, en los brazos se ordena el ADN



Meiosis

Debemos recordar que los organismos superiores que se reproducen de forma sexual se forman a partir de la unión de dos células sexuales especiales denominadas gametos.

x

La meiosis consta de dos divisiones celulares sucesivas (meiosis I y meiosis II) con una sola replicación del material genético, previa a la primera división.

Los gametos se originan mediante meiosis, proceso exclusivo de división de las células germinales (o células sexuales).

La meiosis es un mecanismo de división celular que a partir de una célula diploide (2n) permite la obtención de cuatro células haploides (n) con diferentes combinaciones de genes.

La meiosis consta de dos divisiones sucesivas de la célula con una única replicación del ADN (previa a la primera división o meiosis I). El producto final son cuatro células con n cromosomas

La meiosis se diferencia de la mitosis en que sólo se transmite a cada célula nueva un cromosoma de cada una de las parejas (hay 23 parejas, por tanto son 46 cromosomas) de la célula original. Por esta razón, cada gameto contiene la mitad del número de cromosomas que tienen el resto de las células del cuerpo (o sea, 23 cromosomas).

Cuando en la fecundación se unen dos gametos, la célula resultante, llamada cigoto, contiene toda la dotación doble de cromosomas (46). La mitad de estos cromosomas proceden de un progenitor y la otra mitad del otro.

La meiosis, entonces, consiste en dos divisiones sucesivas de una célula diploide (primera y segunda división meiótica), acompañadas por una sola división de sus cromosomas.

En los organismos multicelulares (el hombre es uno de ellos), la meiosis ocurre únicamente en los órganos encargados de la formación de células sexuales. Estos órganos se denominan gónadas en los animales y son los ovarios de la hembra, que producen gametos femeninos u óvulos, y los testículos del macho, que generan gametos masculinos o espermatozoides.  En las plantas con flores (fanerógamas o espermatófitas), la meiosis opera en determinadas estructuras florales: "ovario" y " antera".


¿Qué son las mutaciones?
A veces, y este es un fenómeno relativamente frecuente, la enzima que se encarga de la replicación del ADN (ADN polimerasa) se equivoca, es decir, coloca un nucleótido en lugar de otro. Si, por ejemplo, la enzima ADN polimerasa coloca una T en lugar de una A podría ocurrir que al traducirse, se coloque en la proteína un aminoácido diferente del que correspondería. Por lo tanto, la proteína generada sería diferente en un aminoácido a la original. Este cambio en el ADN, llamado mutación, podría alterar o anular la función de la proteína.

Este ejemplo ilustra el efecto de los cambios o mutaciones puntuales (debidos a un único cambio en la secuencia) en la proteína final. En algunos casos las mutaciones pasan inadvertidas, pero también pueden provocar la falta de actividad de una proteína esencial y causar una enfermedad. De todas formas, la mayoría de las mutaciones no se manifiestan, o porque están en regiones del ADN donde no hay genes, o porque no cambian el aminoácido, o porque ese cambio no altera la función de la proteína. O bien podría alterarse la función y esto no resultar perjudicial. Tal es el caso del carácter color de ojos, donde el color claro se produce por falta de ciertas enzimas que fabrican los pigmentos del iris.

En realidad, las mutaciones son la base de la biodiversidad. Es decir que las pequeñas diferencias en el ADN es lo que determina que los seres vivos sean diferentes entre sí. Esta diversidad en las características sumada a la existencia de un código genético común entre los seres vivos, son dos hechos determinantes en el desarrollo de la biotecnología moderna.

Tipos de mutaciones

Las mutaciones pueden darse en tres niveles diferentes:


1.-molecular (génicas o puntuales)

2.- cromosómico

3.- genómico
1.-MUTACIONES GÉNICAS O PUNTUALES
Las mutaciones a nivel molecular son llamadas génicas o puntuales y afectan la constitución química de los genes. Se originan por:

Sustitución. Donde debería haber un nucleótido se inserta otro. Por ejemplo, en lugar de la citosina se instala una timina.

Inversión, mediante dos giros de 180° dos segmentos de nucleótidos de hebras complementarias se invierten y se intercambian.

Translocación. Ocurre un traslape de pares de nucleótidos complementarios de una zona del ADN a otra

Desfasamiento. Al insertarse (inserción) o eliminarse (delección) uno o más nucleótidos se produce un error de lectura durante la traducción que conlleva a la formación de proteínas no funcionales.
2.-MUTACIONES CROMOSÓMICAS
El cambio afecta a un segmento de cromosoma (mayor de un gen), por tanto a su estructura. Estas mutaciones pueden ocurrir por:

Delección. Es la pérdida de un segmento cromosómico, que puede ser terminal o intercalar. Cuando ocurre en los dos extremos, la porción que porta el centrómero une sus extremos rotos y forma un cromosoma anular.

Inversión. Cuando un segmento cromosómico rota 180° sobre sí mismo y se coloca en forma invertida, por lo que se altera el orden de los genes en el cromosoma.
Duplicación. Repetición de un segmento cromosómico.
Translocación. Intercambio de segmentos entre cromosomas no homólogos, que puede ser o no recíproca. Algunos tipos de translocaciones producen abortos tempranos. También se pueden formar portadores de trisomías como la del 21 (síndrome de Down); al translocarse todo el cromosoma 21 a otro cromosoma como el 14 (14/21), los gametos de esa persona llevarán el cromosoma translocado más uno normal, por lo que al fecundarse con el gameto contrario, el producto resultante tendrá tres cromosomas 21.http://www.kalipedia.com/kalipediamedia/cienciasnaturales/media/200704/17/delavida/20070417klpcnavid_236.ees.sco.png
3.- MUTACIONES GENÓMICAS
Euploidía.
Afecta al conjunto del genoma, aumentando el número de juegos cromosómicos (poliploidía) o reduciéndolo a una sola serie (haploidía o monoploidía).

La poliploidia es más frecuente en vegetales que en animales y la monoploidía se da en insectos sociales (zánganos). Estas mutaciones son debidas a errores en la separación de los pares de cromosomas homólogos durante la meiosis, no separándose ninguno de estos. Los organismos poliploídes generalmente son más grandes y vigorosos, y frecuentemente presentan gigantismo. En numerosas plantas cultivadas esto se ha capitalizado, especialmente donde el tamaño de hojas, semilla, fruto o flor es económicamente importante, por ejemplo en alfalfa, tabaco, café, plátano, manzana, pera, lila y crisantemo.


Aneuploidía
Afecta al número de cromosomas individualmente (por defecto o por exceso). Se debe al fenómeno de no disyunción (que ocurre durante la meiosis cuando los cromosomas homólogos no se separan y ambos se incorporan a un mismo gameto).
Cuando este gameto fecunda a otro se originará un cromosoma triplicado (trisomía); de igual forma también habrá gametos que tendrán un cromosoma menos y, por ello, cuando fecunden a otro normal, el individuo tendrá un cromosoma menos (monosomía).

http://2.bp.blogspot.com/_edispjx1jg8/sq8qikruxpi/aaaaaaaaa2y/c91ucqanaam/s400/turner-klinefelter.jpg

Trisomías.

La trisomía del cromosoma 21 produce el síndrome de Down (47, XX + 21 ó 47, XY + 21). Los afectados tienen retardo mental en diferente grado, corazón defectuoso, baja estatura, párpados rasgados, boca pequeña, lengua salida, cráneo ancho y marcha lenta. Las mujeres son fértiles y los transmiten al 50% de su progenie; los hombres son estériles.


Los cromosomas sexuales también pueden afectarse por una trisomía.

Los individuos afectados por el síndrome de Klinefelter (47, XXY) son varones estériles con rasgos femeninos y retraso mental. Son fértiles, altos y de conducta controversial. Sus células tienen un número anormal de cuerpos de Barr.

En el síndrome triequis o metahembras (47, XXX) son mujeres fértiles de apariencia normal pero con tendencia al retardo mental.

En la polisomía XYY (47, XYY) Los afectados presentan estatura elevada, acné, un tamaño mayor de dientes, conducta agresiva y la espermatogénesis puede o no estar alterada.


Monosomías.

La falta de un cromosoma produce una monosomía conocida como el síndrome de Turner (45, X) que ocurre en mujeres quiénes desarrollan baja estatura, dobleces característicos en el cuello y retardo mental moderado. En la pubertad no menstrúan ni desarrollan caracteres sexuales secundarios. No presentan cuerpo de Barr como las mujeres normales, pues el único cromosoma X que presentan está activado.



http://4.bp.blogspot.com/_edispjx1jg8/sq8qhniifhi/aaaaaaaaa2q/jgspxuz1wyy/s400/monosom%c3%ada.jpg

Agentes que producen las mutaciones

Las mutaciones pueden ser espontáneas o inducidas; las espontáneas ocurren por causas endógenas o sea internas, que surgen normalmente durante el proceso de replicación del propio ADN. Mientras que las mutaciones inducidas ocurren por causas exógenas, es decir, externas que se producen por la acción de agentes físicos, químicos y biológicos, capaces de actuar directa o indirectamente sobre el ADN.


La importancia de los agentes químicos como mutágenos es considerablemente mayor que la de los agentes físicos. Ello se debe a la contaminación ambiental del planeta como consecuencias de la actividad humana, que hace que la probabilidad de entrar en contacto con un compuesto químico sea mucho mayor que la de estar expuesto a radiaciones. Debemos considerar que el hombre, con el desarrollo de la civilización industrial, ha incorporado al medio ambiente mas de un millón de sustancias que no existen en la naturaleza, o que existiendo, se producen en tales cantidades que pasan a ser contaminantes. De ellos, alrededor de 70.000 se producen en escala industrial y este número se incrementa a razón de aproximadamente 1000 por año. Muchos medicamentos, plaguicidas, aditivos alimenticios o no alimenticios, productos y deshechos de la industria, etc. Son potencial o probadamente mutagénicos. Estos factores pueden causar importantes enfermedades a corto o largo plazo, como la ceguera, lesiones pulmonares, diversos cánceres, etc.
Y por ultimo encontramos los agentes biológicos que se produce cuando los virus, provocan alteraciones en el material genético. Las observaciones realizadas revelaron que los virus inducen microlesiones, es decir mutaciones perceptibles a nivel de los cromosomas con microscopia óptica.
Enfermedades Genéticas

Un trastorno genético es una enfermedad causada por una forma diferente de un gen, llamada “variación”, o una alteración de un gen, llamada “mutación”. Muchas enfermedades tienen un aspectogenético. Algunas, incluyendo muchos cánceres, están causadas por una mutación en un gen o grupo de genes en las células de una persona.

Estas mutaciones pueden ocurrir aleatoriamente o por causa de una exposición ambiental, tal como el humo de los cigarrillos.

Otros trastornos genéticos son hereditarios. Un gen mutante se transmite a través de la familia y cada generación de hijos puede heredar el gen que causa la enfermedad. Sin embargo, otros trastornos genéticos se deben a problemas con el número de paquetes de genes, denominados cromosomas. Por ejemplo, en el síndrome de Down existe una copia adicional del cromosoma 21.



Si sabe que hay un problema genético 
ACTIVIDADES:

  1. ¿Cuales son los dos principales procesos en el que interviene el ADN?http://diariojudio.com/files/2013/05/12105-1.jpg

  2. Explica que significa que el código genético es universal

  3. ¿Cómo esta formado el ADN?

  4. Qué importancia tiene el proceso de replicación?

  5. Grafica una molécula de ADN.

  6. Con un grafico explicá el proceso de replicación de ADN.

  7. ¿Qué partes forman la molécula de ADN?

  8. ¿Cómo es la estructura de la molécula del ADN?

  9. ¿Qué partes forman un nucleótido del ADN? Y del ARN?

  10. ¿De qué manera se asocian o acoplan las bases nitrogenadas?

  11. ¿Qué importancia tiene para la medicina el conocer el código genético humano (genoma humano)?

  12. Establece la diferencia entre cromosoma, gen, cromatina.

  13. Sobre la base del video que se presenta a continuación y con la ayuda de la bibliografía de referencia y la información que busquen en internet,  respondan las siguientes  preguntas:

    a) Video sobre el proceso de duplicación del ADN: La replicación del ADN
    b) ¿Cuáles son las enzimas que participan en el proceso de duplicación del ADN? ¿Qué función cumple cada una?
    c) ¿En qué lugar de la célula ocurre el proceso de duplicación? ¿Cuál es su producto?
    d) ¿Cuál es la causa de la mutación ocurrida en la duplicación que muestra el video? ¿Cuál es la definición de mutación? ¿Todas las mutaciones se originan de esta manera?.

  1. Lee con atención la síntesis de proteínas, subraya los conceptos importantes y luego explicalo en tu carpeta, no olvides ir mirando los dibujos en la medida que trabajas.

  2. Completa en tu carpeta un cuadro como el que sigue

    Función de la proteína

    Explicación

    Ejemplos










  3. Teniendo en cuenta los procesos de reproducción celular, con ayuda de la profesora vas a elaborar un cuadro comparativo entre mitosis y meiosis.

  4. A-¿que son las mutaciones?B- Elabora una red conceptual que muestre los tipos de mutaciones que existen y sus causas.

C-Te propongo que investigues alguna de estas enfermedades genéticas: Síndrome de Klinefelter, Síndrome de Down, Enanismo, Síndrome de Turner, Síndrome de Marfan, Síndrome de Tourette, Enfermedad de Tay-Sachs, Enfermedad de Wilson, Enfermedad de Huntington, Adenoleucodistrofia.




Actividades complementarias
Actividad 1.Lee la siguiente información y, con base en ella realiza las actividades. La secuencia de ADN que se muestra a continuación pertenece a un gen que tiene la información para fabricar una de las cadenas de hemoglobina normal: GTG CAC CTG AGT CGT GAG GAG

GAG GTG GAG GTA GGA GTG GTG

La siguiente secuencia de ADN pertenece a un gen que, al traducirse, produce hemoglobina anormal y desarrolla la enfermedad conocida como anemia falciforme, caracterizada por la formación de glóbulos rojos deformes. GTG GAG GTG AGT GGT GTG GAG

GAG GTG GAG TGA GGA GAG GTG

a. compara las cadenas de ADN y encierra triplete que contiene el error.

b. Escribe la secuencia de ARN mensajero que se fabrica a partir de la última hebra de ADN.



c. Teniendo en cuenta la forma como se produce la anemia falciforme, ¿consideras que es posible curar esta enfermedad con medicamento? Sustenta tu respuesta con dos razones.

Actividad 2.Completa el siguiente cuadro leyendo nuevamente toda la información.

Tipo de ácido nucleico

ADN

ARN

Característica estructural



No



No

Molécula conformada por dos cadenas de polinucleótidos













Molécula conformada por una cadena de polinucleótidos













Contiene desoxirribosa













Contiene ribosa













Contiene  timina, adenina, guanina y citosina













Existen subtipos o variedades del ácido nucleico

         




          




Sus cadenas se encuentran unidas por enlaces de puente de hidrógeno













Contiene adenina, citosina, guanina y uracilo













Su estructura molecular fue descubierta por Watson y Crick












Actividad 3.Completar los espacios en blanco:

La información genética se encuentra codificada en el _____1. Esta molécula de gran tamaño se encuentra en el ________________2 de las células _____________3 (como plantas, hongos y animales). La forma en que la información se encuentra codificada es igual en todos los organismos, por eso se dice que el código genético es _____________4.

Cuando una célula debe dividirse para reproducirse (tanto por mitosis como por meiosis) el ADN previamente se ______________5.

Cuando una molécula de ADN se superenrolla durante la mitosis o meiosis, puede ser vista a microscopio óptico con forma de X, esta estructura se denomina _______________6

En cada molécula de ADN se encuentran muchos genes. En términos generales, se define gen como la porción de ADN que codifica para una ______________7

Para que cada gen se exprese, deben ocurrir dos procesos: el primero consiste en la síntesis del ______8 que llevará el mensaje del ADN; este proceso se denomina ________________9. El segundo proceso consiste en la síntesis de la _____________10 respectiva en los _________11 , proceso en el cual interviene también otro ________12 conocido como _______________13 que tiene un anticodón y el aminoácido correspondiente. Este proceso se denomina _____________14.

Un cambio en la secuencia del ADN se denomina _______________15
Actividad 4: Completar los espacios en blanco con una de las opciones dadas

1. Las proteínas son -------------- ( macromoléculas/aminoácidos/nucleótidos) formadas por polímeros de --------------------------(ácidos nucleicos/ aminoácidos


2. Para que la síntesis de proteínas pueda ocurrir, en una primera etapa se debe traspasar la información del gen a un ------------- (ARNt/ARNm/ARNr). Este proceso es catalizado por la enzima------- (ADNpolimerasa/ARNpolimerasa) y se denomina---------- (transcripción/traducción). El ARNm sintetizado atraviesa los poros de la membrana ------------ (plasmática/nuclear) y se dirige hacia los ribosomas donde se

lee el mensaje del ARNm para comenzar la -------------(transcripción, traducción).

3. El dogma central de la biología postula que la información genética se transmite mediante un flujo ----------- (bidireccional/unidireccional ), que va del ---------(ARN/ARNm/ADN/ARNt) hacia el -----------(gen/ARN/ARNt/proteína) y de este a las --------------(aminoácidos/nucleótidos/proteínas).

4. La información del ARNm se divide en tripletes de bases nitrogenadas llamadas --------------(codones/anticodones) que tienen información para un ----------------aminoácido/monosacárido/nucleótido) de los que formarán a la proteína. Para sintetizar la proteína en los ribosomas es necesario que tengan los aminoácidos especificados por el ARNm. La molécula encargada de llevar un aminoácido es el ------------ (ARNt/ARNm/ARNr) y la enzima que cataliza la unión del aminoácido con el ---------(ARNt/ARNm/ARNr) se llama--------- (aminoacil-ARNt sintetasa /peptidil transferasa). Al llegar al ribosoma es reconocido por su triplete llamado-------------- (codón/anticodón) que es complementario con el del ARNm.

5. El código genético es universal porque los mismos--------- (anticodones/codones) en diferentes especies codifican para los mismos -------------------------------(nucleótidos/aminoácidos/proteínas). Es degenerado puesto que hay -----(menos/más) --------(codones/anticodones) que---------- (proteínas/aminoácidos), de

forma que un determinado aminoácido puede estar codificado por más de un--------------(anticodón/codón)





Compartir con tus amigos:


La base de datos está protegida por derechos de autor ©odont.info 2017
enviar mensaje

    Página principal